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Scale invariant neural dynamics are a relatively new but effective means of measuring

changes in brain states as a result of varied cognitive load and task difficulty. This study

tests whether scale invariance (as measured by the Hurst exponent, H) can be used with

functional near-infrared spectroscopy (fNIRS) to quantify cognitive load, paving the way for

scale-invariance to be measured in a variety of real-world settings. We analyzed H

extracted from the fNIRS time series while participants completed an N-back working

memory task. Consistent with what has been demonstrated in fMRI, the current results

showed that scale-invariance analysis significantly differentiated between task and rest

periods as calculated from both oxy- (HbO) and deoxy-hemoglobin (HbR) concentration

changes. Results from both channel-averaged H and a multivariate partial least squares

approach (Task PLS) demonstrated higher H during the 1-back task than the 2-back task.

These results were stronger for H derived from HbR than from HbO. This suggests that

scale-free brain states are a robust signature of cognitive load and not limited by the

specific neuroimaging modality employed. Further, as fNIRS is relatively portable and

robust to motion-related artifacts, these preliminary results shed light on the promising

future of measuring cognitive load in real life settings.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Functional near-infrared spectroscopy (fNIRS) is a neuro-

imaging technique that has gained increasing attention in

recent years due to its relative robustness to motion artifacts

and environmental noise, making it more suitable for neuro-

imaging outside standard laboratory settings (Huppert et al.,

2006; Pinti et al., 2018) and with hard-to-test populations

(Lloyd-Fox et al., 2010). Like functional MRI, fNIRS measures

changes in the brain's hemodynamic response, but does so

using light spectroscopy at near-infrared wavelengths. At the

onset of regional neural activity, metabolic demands rise, and

blood flow increases in that area. This increased blood flow

leads to higher concentrations of oxygenated hemoglobin

concentrations (HbO) and lower concentrations of deoxy-

hemoglobin concentrations (HbR). Measuring these oxy- and

deoxy-hemoglobin concentration changes in fNIRS provide a

complementary method to fMRI with lower cost and greater

use-case flexibility (Ferrari & Quaresima, 2012). Many findings

from fMRI have been replicated using fNIRS, such as activa-

tion changes that result from varying cognitive load in work-

ing memory tasks (Cui et al., 2011; Mencarelli et al., 2019;

Owen et al., 2005).

Cognitive load refers to the level of demand and difficulty

people bear when performing a cognitive task (Garbarino &

Edell, 1997; Paas & Van Merri€enboer, 1993). More specifically,

it often indicates the amount of working memory used or the

number of items people are actively holding in working

memory (Mencarelli et al., 2019; Owen et al., 2005). However,

when people are continuously under high cognitive load and

there are sustained demands on attention and working

memory, performance can decrease, and people may suffer

from high levels of mental fatigue. This fatigue can be very

dangerous, especially for those who work in positions

requiring sustained attention, such as pilots, doctors, techni-

cians under military duties etc (Klaassen et al., 2014; Pattyn

et al., 2008). Similarly, in an educational setting, children

may not learn effectively or perform well if they are already

experiencing high levels of cognitive fatigue (Sievertsen et al.,

2016).

Both behavioral (i.e., speed and accuracy in a task) and

physiological measures (i.e., skin conductance, blood glucose,

cardiac function) have been used to measure cognitive load in

previous work (Kennedy & Scholey, 2000; Naccache et al.,

2005). However, behavioral measures do not directly reflect

cognitive load and may neglect ‘compensatory effort’ (Kardan

et al., 2020a). That is, people may exert extra effort and

experience higher cognitive load and fatigue while maintain-

ing the same level of performance. Physiological methods do

not index cognitive load directly as well, as they measure

cardiovascular and sympathetic nervous activities, which are

an indirect proxy of cognitive load. It can be hard to tell what

changes may be predominantly due to cognitive effort and

what might be primarily due to arousal (Fishburn et al., 2014)

and stress (Grady et al., 2010; McKiernan et al., 2003). Thus,

behavioral and physiological methods are neither specific nor

fully sensitive to detect changes in cognitive load. To better

monitor these changes, it would be advantageous to identify a

reliable neural measure, both sensitive and specific to
cognitive difficulty, effort, or fatigue, which utilizes mobile

neuroimaging technology.

Previous neuroimaging studies investigating cognitive load

with fNIRS and fMRI have often centered around localized

activation that differs based on task difficulty or working

memory load (Fishburnetal., 2014;Gradyetal., 2010;McKiernan

etal., 2003).However, thepresent studyaimed tomeasure levels

of cognitive load through a whole brain neural signature, scale

invariance of the broadband brain signal, quantified by theHurst

exponent (H). This signature has been validated with fMRI and

EEG studies and has proved sensitive and specific to changes of

cognitive load (Churchill et al., 2016; Kardan et al., 2020a;Maxim

et al., 2005). H is considered a global measure as changes in

scalingdue to taskdemandsor individual differenceshavebeen

found across the whole brain (in fMRI which provides whole

brain coverage) andH changes are unidirectional, following the

same pattern of effects across regions examined (Churchill et

al., 2015; Kardan et al., 2020b). Changes in H are stronger in

some regions than others, particularly those that are task-

relevant and also show changes in activation and/or func-

tional connectivity due to task demands (Churchill et al., 2016;

Kardan et al., 2020b). Thus, H is both a unidirectional signature

and shows a certain level of spatial selectivity.

Scale invariance (also called scale-free or fractal scaling)

refers to the property of a time series signal that it has

persistent autocorrelation with long-range dependency. By

this, we mean that similar fluctuation patterns appear at all

time scales (whether examined over a short window or a

longer window) and no specific frequency band (i.e., alpha

band vs beta band, etc.) plays a dominant role. From the fre-

quency perspective, scale invariant neural signals exhibit a

powerelaw relationship between Power Spectral Density of

the signal (PSD), and its frequency (f), where PSD(f) ~ f�b, b� 0.

When the signal is scale-invariant, the slope of this function,

b, should be positive (PSD close to 1/f). The more scale-

invariant the signal is, the more inclined the slope is and the

higher value of b. Conversely, if the signal is less scale-free,

the slope is shallower, with a lower value of b (Kardan et al.,

2020b). According to this formula, the degree of temporal

scale invariance can be calculated by the Hurst exponent (H),

which is related to the slope b via equation H ¼ (b þ 1)/2, or

b ¼ 2H � 1. Therefore, if a signal is scale invariant and shows

larger long-range dependency, it will lead to a higher value of

H, which corresponds to a higher value of b (steeper slope).

The range of possible values of H are somewhat different

however, depending on whether the signal being recorded is

stationary (that is, the mean and variance does not change

over time as is typical in fMRI; Barnes et al., 2009; Churchill et

al., 2016; He, 2011) or nonstationary (as is typically found in

neural field potentials or EEG; Freeman & Zhai, 2009; He et al.,

2010; Miller et al., 2009). If the signal is stationary, the slope (b)

of power spectral density should be between 0 and 1 and the

Hurst exponent should fall between .5 and 1 because

H¼ (bþ 1)/2. The floor ofH is .5, as this representswhite noise,

where power is not related to frequency, but rather power is

uniformly distributed across frequency. If examined in log

space, this would represent a line with zero slope.

In contrast, if the brain signals are nonstationary, then the

slope b can exceed 1. For example, in EEG recordings, typical

values for b are in the range of 1e2.5, leading to a calculation
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of H in the range of approximately 1e1.75 (Dehghani et al.,

2010; Freeman et al., 2003). Similarly, nonstationary field po-

tentials yield estimates of H in the range of 2e4 (Eke et al.,

2002; Mandelbrot & Van Ness, 1968). Though fNIRS is

measuring the same metabolic process as fMRI, fNIRS data

does exhibit a certain amount of nonstationarity due to how

the data is measured. Specifically, the underlying biological

signal in fNIRS is slower than the rate at which the data are

sampled can lead to some nonstationarity in the data.

Previous research has found that H, the scale invariance

index, is a robust neural indicator of cognitive load (Barnes

et al., 2009; Churchill et al., 2016; He, 2011). The effectiveness

of H in quantifying cognitive load and task engagement has

been validated in both fMRI (BOLD signals) and EEG studies

(oscillatory activity; Kardan et al., 2020a). H decreases globally

with changes in cognitive load and task difficulty, where it is

highest during rest, lower while participants perform tasks,

and shows the most suppression during highly cognitively

demanding tasks. A defining characteristic of temporal scale-

invariance is that this persistent autocorrelation and fractal-

like self-similarity is unaffected by the magnitude of the

time window examined. As H has been extracted from mul-

tiple neuroimaging modalities spanning very different sam-

pling rates and time scales (i.e., .01e.2 Hz in minutes-long

fMRI time series, ~30 Hz in seconds-long downsampled EEG

time series data), and is not dominated by any particular fre-

quency band (Churchill et al., 2016; Kardan et al., 2020a), this

suggests that H is a truly scale-free measure. In other words,

slower signals and faster/more frequent signals exhibit the

same relationships of higher H indicating lower cognitive

effort, and that the Hurst measure applies to all frequencies

and not to narrow frequency bands. In this way, this measure

is a useful metric to unite different neuroimaging modalities.

It has been proposed thatHmeasures how close the brain is

to a “critical state”. Criticality is a concept taken from physics

that reflects how readily a system can transition between

different statesandhasbeenapplied tobiological systems, such

as thebrain (Cocchietal., 2017). In this case, abrain state close to

a critical point is minimally stable and maximally sensitive to

perturbations from exogenous inputs (Kardan et al., 2020b). In

neural network simulations, a critical brain state increases the

dynamic range of the system (Gautam et al., 2015; Kinouchi &

Copelli, 2006) and facilitates the transfer of information

(Boedecker et al., 2012). This framework supports the findings

thatmore scale-freebrain states,whichare closer to thepoint of

criticality, are associated with exerting less cognitive effort,

engaging in an easier task, being younger, or experiencing

minimal or no psychopathology symptoms (Churchill et al.,

2016; Kardan et al., 2020a, 2020b; Stier et al., 2021). In other

words, higher H values reflect brain activity closer to a critical

state, allowing higher H brains to take in external information

and shift to a different state if needed. H decreases as cognitive

load increases as the brain is less able to take in external infor-

mation needed to transition to a different task-relevant state if

required.

However, while the effectiveness of the Hurst exponent as a

cognitive load measurement has been validated in both fMRI

and EEG studies, it has not yet been examined in fNIRS.

Compared with fMRI and EEG, fNIRS is more robust to motion

artifacts and environmental noise and is more portable,
making it ideal for investigations in ecologically valid settings

(for example, measuring fatigue during driving; Liu et al., 2016,

or learning in school aged children; Soltanlou et al., 2018). The

results of this study will shed light on future theoretical and

practical investigation of cognitive load, fatiguewith fNIRS, and

evenmonitoring cognitive load levels and signaling changes by

neuro-feedback to mitigate fatigue (Luctkar-Flude and Groll,

2015a). This would allow researchers to measure cognitive fa-

tigue in some difficult scenarios, such as in school settings

where children are trying to learn different cognitive tasks,

workplace settings such as aeronautics, transportation and

even possibly space travel. We expected that, if scale invariant

brain states are indeed robust indicators of cognitive load or

task difficulty, the effects should be generalizable across neu-

roimaging modalities, and we should be able to replicate pre-

vious findings with fNIRS. The present study therefore

addresses whether this temporal neural signature is also

feasible in quantifying cognitive load with fNIRS.

1.1. Study design and hypothesis

Based on previous findings in fMRI and EEG studies (Barnes

et al., 2009; Churchill et al., 2016; He, 2011, 2014), we hypothe-

size that increasing levels of cognitive load will be associated

with suppression ofH, indicating decreased scale invariance as

measured by fNIRS signals. To test this in the current study, we

examined H in an N-back working memory task while fNIRS

data were recorded, in a dataset previously analyzed and re-

ported in Meidenbauer et al. (2021)

The N-back task is a classic working memory paradigm

which places high demands on working memory and atten-

tion with varying levels of task difficulty and cognitive load

(Mencarelli et al., 2019; Owen et al., 2005). In the N-back

working memory task, participants are required to match the

current word/stimulus with the word presented in the previ-

ous Nth trial and make a response. The task's difficulty is

adjusted by changing the value of N. In the current study, N is

equal to 1, 2, or 3, and defined as ‘1-back’, ‘2-back’ and ‘3-back’

conditions. Here, the ‘1-back’ is the easiest and the ‘3-back’ is

the most difficult. Accordingly, we hypothesize that scale

invariance of fNIRS signal, measured as Hurst exponent (H),

will decline with the increasing task difficulty: whereby the ‘1-

back’ will show the highest H, while the ‘3-back’ will have the

most suppressed/lowest H, indicating a higher cognitive load.

We also hypothesize that H will be higher during rest blocks

than during task blocks. We test these hypotheses using H

averaged across all frontal channels as well as using a Task

partial least squares (Task PLS) multivariate approach which

incorporates channels, as we may also see some spatial-

specificity in where changes in H are the strongest.
2. Method

This paper uses a dataset previously reported in (Meidenbauer,

Choe, Cardenas-Iniguez, Huppert, & Berman, 2021). We report

how we determined our sample size, all data exclusions, all

inclusion/exclusion criteria, whether inclusion/exclusion

criteria were established prior to data analysis, all manipula-

tions, and all measures in the study.

https://doi.org/10.1016/j.cortex.2022.05.009
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Fig. 1 e Locations of the channels in the International 10/20

coordinates All 33 channels covering bilateral frontal

cortex are used in H analysis. 10 Parietal channels

(highlighted in orange) were excluded (see Section 2.5.3).
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2.1. Participants

Seventy adults participated in this study. Participants were

recruited from the Chicago area. Participants were only

excluded from participating if they did not have normal or

corrected-to-normal visual acuity or reported a history of

neurological disorders. Participants gave written informed

consent before participation and experimental procedures

were approved by the University of Chicago's Institutional

Review Board (IRB). Participants were compensated $26 or 2

units of course credit, plus a performance-based bonus of up

to $10. The full procedure included approximately 15 min of

additional study elements related to a video intervention that

were separate from the current work. Our sample size was

determined based on hypotheses related to these in-

terventions. The full study procedures lasted between 75 and

90 min. From the original 70 participants, 8 participants were

excluded from all data analysis due to technical issues,

participant non-compliance with the task procedures, or low-

quality data. For this particular analysis, 10 additional par-

ticipants were excluded due to insufficiently high data quality

as defined by the structured noise index (SNI; see section

Exclusion of participants based on SNI), leading to a final sample

of 52 participants. Of the 52 participants analyzed here, 26

were male and 26 were female, and the mean age was 24.5

years (SD ¼ 6.9 years). 10 participants identified as Hispanic or

Latino/a, 13 as Asian or Asian American, 9 as Black or African

American, 13 as White or European American, 5 participants

reported 2 or more racial or ethnic identity groups, and 2

preferred not to disclose.

2.2. fNIRS data acquisition

fNIRS data were acquired using a continuous-wave NIRx Nir-

sport2 device (NIRx Medical Technologies, LLC) and NIRx

acquisition software Aurora 1.2 at a sampling rate of ~4.4 Hz.

Near-infrared light of two different wavelengths (760 and

850 nm) was used to detect the concentration change of

oxygenated hemoglobin (HbO) and deoxygenated hemoglobin

(HbR). There were 16 sources and 16 detectors used, creating

43 channels in total, 33 channels covering the bilateral frontal

cortex and 10 channels covering the right parietal cortex.

Because of the low quality of parietal data collected, the

following analysis focuses on data collected in the frontal

region (Fig. 1; See section Exclusion of noisy channels based on

Structured Noise Index). The montage was created using fOLD

(fNIRS Optodes' Location Decider; Morais et al., 2018), which

allows placement of optodes in the international 10e10 sys-

tem to maximally cover anatomical regions of interest. The

AAL2 (Automated Anatomical Labeling; Rolls et al., 2015)

parcellation was used to generate the montage and provide as

much coverage of the prefrontal cortex (PFC) as possible,

including bilateral superior and inferior frontal gyri.

2.3. N-back task

Experimenters first took participants through step-by-step

instructions of the N-back task before they began practice.

Participants were told that they would see a sequence of short

words that are separated by brief fixations (small circles), and
that a word would be presented every 2 sec which should be

compared to the word “N” trials back. In the current study,

N¼ 1, 2, or 3. Participants were instructed to press the “m” key

if the current word matched the word N trials back, and to

press the “n” key if the current word did notmatch the word N

trials back [Fig. 2]. Blocks began by first displaying the N-back

level for that round and a fixation cross (5 sec). Each task block

contained a 15-length pseudorandom sequence of two words,

presented for 2 sec each (total of 30 sec), followed by 20 sec of

rest. The length of each block was 55 sec, and with 18 blocks

the total length of the N-back task was approximately

16.5 min. To suppress sequence memory formation, the two

words used in each block were randomly selected from the

eight-word pool (‘WHAT’, ‘HOW’, ‘WHEN’, ‘WHY’, ‘WHERE’,

‘WHO’, ‘THAT’, ‘BUT’), except during the first practice, in

which the same two words (“AXE” and “BOX”) were used. The

sequence of two words was determined using an m-sequence

(base ¼ 2, power ¼ 4); thus, one word appeared eight times,

and the other word appeared seven times; Buracas& Boynton,

2002; Choe et al., 2014; Choe et al., 2016) to suppress autocor-

relation. In all cases, words were presented in white text on a

black background.

2.4. Study procedures

After providing informed consent, experimenters measured

the participants' head to determine cap size and placement,

then began to set up the cap while participants were taken

through task instructions and given an opportunity to practice

the N-back task. The first round of N-back practice consisted

of 9 blocks. In this first practice, accuracy feedback was pro-

vided on a trial-by-trial level as well as at the end of each

block. Participants completed 3 blocks of 1-back, then 3 blocks

https://doi.org/10.1016/j.cortex.2022.05.009
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Fig. 2 e The ‘N-back’ task paradigm. Participants were required to respond whether the current word matched the word N

trials back (N ¼ 1,2,3). Task difficulty and cognitive load increases with larger N.
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of 2-back, then 3 blocks of 3-back, and then onemore round of

1-back, 2-back, and 3-back. After the first round of practice,

the cap was placed on the participants' head, moving hair as

needed to provide clear access to the scalp for the sources and

detectors. Cap alignment was verified based on the interna-

tional 10e20 location of Cz (Klem et al., 1999). fNIRS data were

calibrated and checked for quality before proceeding. If any

channels were not displaying sufficiently high-quality data,

placement and hair-clearing were performed again. After the

fNIRS cap was set up, participants began the second round of

practice designed to mimic the conditions of the real task

more closely. In this practice, participants performed a single

block of 1-back, then 2-back, then 3-back, without trial-by-

trial feedback. The main N-back task involved 18 blocks,

with 6 blocks of each N-back level, pseudorandomly pre-

sented. After completing the experiment, the cap was

removed, and participants completed a demographics ques-

tionnaire. All experimental procedures were coded and pre-

sented using PsychoPy (Peirce et al., 2019). N-back experiment

code can be accessed at https://osf.io/sh2bf/

Participants received a performance-based bonus during

the main round (18 blocks) of N-back task. The bonus

was defined as an additional 40 cents per block if perfor-

mance >90%, an additional 30 cents per block if perfor-

mance >80%, and an additional 20 cents per block if

performance >60%. Performance under 60% did not yield a

cash bonus in this study. Participants were informed of their

performance on each block and total bonus directly

following the 30 sec of task.

2.5. Data analysis

All code can be accessed at: https://osf.io/kt5cx/

2.5.1. fNIRS signal preprocessing
fNIRS data were first loaded into the HOMER2 software pack-

age (Huppert et al., 2009) for visual inspection of overall data

quality (at the level of the participant). This was done by

examining the power spectral density plots for all channels to

identify the presence of a cardiac oscillation (typically ~1 Hz

Tong et al., 2011), which indicates that the optical density

signals are successfully coupled with a physiological hemo-

dynamic response (Hocke et al., 2018). This method was used

to do a first pass evaluation. For fNIRS data pre-preprocessing,

this study used the Brain AnalyzIR Toolbox (Santosa et al.,

2018), and first converted raw light intensity values into
optical density signals. Then, optical density signals were

transformed into concentration changes of HbO and HbR

values based on the modified BeereLambert law (Strangman

et al., 2003).

2.5.2. Hurst exponent calculation on HbO and HbR data
To calculate theH value, the key index of interest in this study,

we used the Detrended Fluctuations Analysis algorithm,

which was developed for fMRI H analysis (DFA) (Churchill et

al., 2015, Churchill et al., 2016). We adopted the DFA algo-

rithm to derive H from fNIRS signals in our analysis as fNIRS

measures the same biological signal as fMRI.

DFA measures the power in HbO/HbR fluctuations for

different time windows of the data, formulated as F(n) as a

function of time in windows of length n. The Hurst exponent

is equal to the slope a of a linear fit between the log-

transformed F(n) and n, with a ¼ 1 indicating a perfectly

fractal signal. The length of time window, n, in our analysis

was set as the full length of rest, which was 20 sec, with which

the sampling rate of ~4.4 Hz, yielded 87 samples/block. We

kept this time window the same between task and rest so the

two could be directly compared. As the task-evoked hemo-

dynamic response occurs on a delay after the onset of the

underlying neural activity, the last 20 sec of the 30 sec window

of task was used in the DFA calculation.

As each N-back experiment condition had 6 blocks (18

blocks in total), including both task and rest, after the DFA

calculation, each participant had 18 H values for task and 18

for rest (6 for each condition) for each of the 33 channels.

Further visualization and statistical analysis were based on

these H values, the key index of interest.

2.5.3. Exclusion of noisy channels based on structured noise
index (SNI)
Before conducting statistical analysis, we first examined data

quality based on the Structured Noise Index (SNI), calculated

from the Brain AnalyzIR toolbox. SNI was calculated for each

channel, for each participant, and is a useful tool in capturing

the systematic noise across channels and participants. The

SNI is defined as the ratio of the variance of the full data trace

to the variance of the auto-regressively whitened trace of the

same data and reflects the ratio of structured (colored) noise in

the data due to various physiological processes to the uncor-

related (white) noise. This approach was inspired by the

spatial SNI method described in Nelson et al. (2014) and

applied to the fNIRS time signals in this work. This step was

https://osf.io/sh2bf/
https://osf.io/kt5cx/
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important as fNIRS signals are sensitive to superficial physi-

ological noise (e.g., hair) and participants have varied levels of

interference based on the color and texture of their hair

(Santosa et al., 2018). When SNI is less than 2, it indicates that

the data from this channel are very noisy and not appropriate

for further analysis, and hence, we defined channels with SNI

less than 2 as ‘bad’ channels.

Based on this criterion, we found that, out of total 43

channels, participants had on average 6.94 bad channels for

HbO (16%) and 9.35 bad channels for HbR (22%), and that these

bad channels mainly centered around parietal regions, where

signals aremore likely to be obstructed by hair. In this dataset,

a large number of participants (46 out of 52) had one or more

channels marked as “bad” in those covering the right parietal

cortex (channels no. 33e43 in Figs. 1 and 3). Therefore, in the

following analysis, we excluded the 10 channels in the right

parietal cortex, resulting in a total of 33 channels for analysis.

2.5.4. Exclusion of participants based on SNI
Additionally, after excluding those 10 channels in the parietal

cortex, 10 participants' data were found to have many poor-

quality channels (shown in Fig. 4). This was defined by par-

ticipants whose count of bad channels exceeded 1 SD (3.0 bad

channels for HbO; 3.4 bad channels for HbR) from the average

number of bad channels (2 bad channels for HbO; 3 bad

channels for HbR). Following this criterion, participants who

either had 5 bad channels for HbO or 6 bad channels for HbR

were excluded from further analysis. On average, these 10

outlier participants had 8 (24%) bad channels for HbO and 9

(27%) bad channels for HbR.

As an additional check, after calculating the Hurst expo-

nent, we plotted average H across all task sessions by chan-

nels for each participant. As H is a global signal across the

whole brain, we expectedmoderate to high levels of similarity

across channels (Churchill et al., 2016; Kardan et al., 2020b).

Large fluctuations between channels of the same participant

in the same run suggest poor data quality, potentially stem-

ming from hair thickness variations. Shown in Fig. 5, we could

see that compared to ‘good fNIRS quality’ participants (upper
Fig. 3 e Number of participants with each channel (1e43) marke

as ‘bad’ were calculated based on channel SNI < 2. Left figure f

channels over parietal cortex that were excluded from future an
panel), ‘poor fNIRS quality’ participants (lower panel) gener-

ally had more variable responses across channels that were

very irregular and unexpected, which further justified this SNI

based participants exclusion step.

2.5.5. Regressing SNI from H values
We further regressed the SNI out from the H value of each

channel, which accounts for different degrees of noise across

channels, to remove the systematic interference of noisy data.

The value of H after SNI being regressed out was used in

further analysis.

2.5.6. Accounting for motion-related artifacts
Lastly, as the scale-invariance of a data time series can be

influenced by the presence of large fluctuations not due to the

underlying biological signal, such as motion-related artifacts

(Rubin et al., 2013), we evaluated the presence of such artifacts

across conditions and for task and rest separately to ensure

thesewere not driving any results. For example, if participants

in the study systematically demonstrated more head move-

ment more during rest blocks than during task blocks, this

would lessen the interpretability of our H results. To do this,

the raw data were first segmented into the same 20 sec blocks

used in the DFA calculation and statistical analysis. Next,

statistical outliers in the 20 sec of data were identified by

calculating the innovations model for each segment using the

function nirs.math.innovations() in the Brain AnalyzIR

Toolbox (Santosa et al., 2018). The innovations in each time

series reflect the uncorrelated (whitened) signal after filtering

using the autoregressive model. Here, each 20 sec time series

for the 33 channels used in the Hurst analyses for each

participant was fed into the function, and the maximum

model order was set to 20. This was chosen based on the

recommendation that the maximum model order is at least 4

times the sample rate (here ~4.4 Hz).

The output of this function is an innovations time series for

each channel for each segment. Subsequently, the number of

studentized outliers were calculated (outliers defined as

p < .05). The counts of these outliers across all 33 channels for
d as bad. The number of participants reporting the channel

or HbO; Right figure for HbR. Channels 33e43 reflect 10

alysis.
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Fig. 4 e Number of ‘bad’ channels per participant after excluding parietal channels. Histograms show the number of ‘bad’

(SNI < 2) channels (out of 33) each participant had after removing the 10 parietal channels for HbO (left) and HbR (right). The

blue line represents the mean number of bad channels across participants and the red lines indicate 1 SD from the mean.

Fig. 5 e Averaged H value by channels for participants with good and poor data quality. H value for each 20 sec segment was

averaged for each block type for each participant. The upper figures showed the averaged H for participants marked as

having ‘good quality data’ (left for HbO, right for HbR); the lower figures showed the averaged H with error bars reflecting

standard deviations for participants which were marked as having ‘poor quality data’ (left for HbO, right for HbR).
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each segment and each participant were then saved. The

average number of statistical outliers by segment type (all

task, all rest, 1-back, 2-back, and 3-back) across are presented

in Table 1. Paired t-tests (mimicking the statistical tests on

averaged H values, detailed below) were also conducted to

compare the number of outliers/artifacts by condition. The

results of these tests are also presented in Table 1. The

number of outliers was generally quite low: out of ~2870 data

points reflecting time (~87 samples) � 33 channels, the

average number of outliers participants had for each condi-

tion was between 182 and 200, or roughly 6.3%e6.9% of the

data. The counts were also very similar across conditions

[Table 1]. For those comparisons which did show a significant

difference between conditions, the relative number of outliers

were in the opposite direction of what would be expected if

these motion artifacts were affecting the H results, as prior

work that includes both real data and simulated data all

indicate that greater motion artifacts lead to less scale

invariant time series and lower H values (Chen et al., 2002;

Rubin et al., 2013). Additionally, it is unlikely that this would

be driving any effects, as we do not see consistently different

motion artifacts across HbO and HbR but similar H effects in

both. This suggests that these outliers (which exceedwhat is a

reasonable change to be expected from the biological signal of

interest) are not responsible for differences in H values across

conditions.

2.5.7. Statistical analysis on average H
Using the cleaned averaged H values with SNI regressed out,

planned pairwise t-tests between task and rest were con-

ducted on HbO and HbR separately. Next, two repeated mea-

surements ANOVAs (separately for HbO and HbR) were

conducted on average H value with N-back condition (1-back,

2-back, or 3-back) as a within-subjects factor. Lastly, we also

examined pairwise t-tests comparing each of the three N-back
Table 1 e Counts & comparisons of average number of
motion related artifacts.

Counts HbO time series
M (SD)

HbR time series
M (SD)

Task 183.6 (71.8) 197.5 (65.0)

Rest 184.1 (71.6) 198.8 (64.1)

1-back task 182.7 (71.8) 200.1 (67.3)

2-back task 183.1 (72.1) 196.1 (64.4)

3-back task 185.5 (71.8) 196.2 (63.3)

Pairwise T-tests HbO HbR

Task versus rest t(51) ¼ �.48, p ¼ .63 t(51) ¼ �1.78, p ¼ .08

1-back versus 2-back t(51) ¼ �.36, p ¼ .72 t(51) ¼ 2.57, p ¼ .01

2-back versus 3-back t(51) ¼ �1.41, p ¼ .16 t(51) ¼ �.07, p ¼ .94

1-back versus 3-back t(51) ¼ �1.77, p ¼ .08 t(51) ¼ 2.11, p ¼ .04

The average number of motion artifacts were calculated for each

participant in each 20 sec block type (all task, all rest, 1-back, 2-

back, and 3-back). Each average count is out of 2871 potential

data points (33 channels � 87 samples). M and SD calculated over

the 52 participants' average motion artifacts in each block type. T-

tests reflect paired (within-subjects) comparisons of motion arti-

fact counts in each block type.
conditions. These analyses were carried out using R version

3.5.1 (R Core Team, 2018).

2.5.8. PLS analysis
In addition to statistical analyses on theHurst values averaged

across channels, partial least squares (PLS; Berman et al., 2014;

Krishnan et al., 2011; McIntosh& Lobaugh, 2004; https://www.

rotman-baycrest.on.ca) analyses were also conducted using

Matlab v 2018b. PLS is a data-driven, multivariate statistical

technique which identifies the relationship between two sets

of variables. In neuroimaging research, PLS is often used to

find the relationship between neural activity at different

spatial locations (e.g., voxels or ROIs in fMRI data, electrodes

in EEG data, channels in fNIRS data) and the task design (e.g.,

experimental conditions or grouping variables). In the current

work, a Task PLS was conducted to examine H by N-back level

across channels to investigate whether there were specific

regions of the PFC that showed a stronger relationship be-

tweenH and cognitive load and aswemay be losing important

channel-level information by averaging across the full

montage.

The partial least squares analysis relies on the singular

value decomposition (SVD) of a covariancematrix. In the Task

PLS analysis, the input for SVD is a matrix of the H values for

each channel by condition (N-back level) that are averaged

across participants (i.e., matrix of 33 channels � 3 N-back

levels). Running an SVD on this 33 � 3 covariance matrix (R)

decomposes it into three matrices: R ¼ UDVT, where the 3 � 3

matrix U represents the decomposition of R in N-back condi-

tion space, the 33 � 3 matrix V represents the decomposition

of R in neural activity channel space, and D is the 3 � 3 diag-

onal matrix of singular values that quantifies the weighting of

each of the singular vectors (i.e., columns in U and V’). These

linear decompositions which maximize the covariance be-

tween brain activity (H values) and task design (N-back level)

are referred to as latent variables (LVs). In other words, each

LV is comprised of the singular vector V, which reflects a

linear combination of channel-level H values (i.e., is a 1

LV � 33 channel vector) that best characterize R, the singular

vector Uwhich reflects the design profile (1 LV� 3 N-back level

vector) that best characterize R, and the weighting of the LV

which is represented by a singular value in one column of the

diagonal matrix, D. These LVs are calculated in order of

magnitude of cross-block covariance explained and are

mutually orthogonal, so the first latent variable (LV 1) explains

the greatest proportion of cross-block covariance, the second

latent variable (LV 2) explains the secondmost proportion, etc.

Ten thousand permutation tests were performed to obtain

p-values for each latent variable and 10,000 bootstrapped

samples with replacement were created to generate the 95%

confidence intervals for variable loadings. The bootstrap ra-

tios (calculated as salience [weights]/standard error [reli-

ability]) measure the reliability of the relationship at each

channel, and a larger bootstrap ratio indicates a stronger and/

or more consistent contribution to the LV. In this study,

channels with bootstrap ratios larger than þ2 or smaller than

�2 were determined to be statistically significant as these

bootstrap ratios can be interpreted as z-scores.

https://www.rotman-baycrest.on.ca
https://www.rotman-baycrest.on.ca
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3. Results

3.1. Statistical analysis on averaged Hurst exponents

For the task and rest comparison, planned pairwise t-tests

with Bonferroni correction (critical ⍺ ¼ .05/2 ¼ .025) showed

that comparedwith the rest condition, averagedH scoreswere

significantly lower in the task conditions for both HbO (task

M ¼ .83, SD ¼ .15, Rest M ¼ .96, SD ¼ .15, t(51) ¼ 11.76 p < .001)

and HbR (task M ¼ .88, SD ¼ .17, Rest M ¼ .94, SD ¼ .16;

t(51) ¼ 7.72, p < .001). These results are shown in Fig. 6.

For the N-back conditions comparison, where N-back con-

dition is a within-subjects factor, repeated measures ANOVAs

on averaged H by both HbO and HbR showed a significant

omnibus ANOVA for H extracted from HbR (F(2,102) ¼ 3.78,

p ¼ .026), but not from HbO (F(2,102) ¼ 1.92, p ¼ .153). In both H

extracted fromHbO and HbR, 2-back had the lowest value (HbO

M¼ .82, SD¼ .15; HbRM¼ .86, SD¼ .19) ofH, followedby 3-back

(HbO M ¼ .83, SD ¼ .15; HbR M ¼ .88, SD ¼ .16) and then 1-back

(HbO M ¼ .84, SD ¼ .16; HbR M ¼ .89, SD ¼ .17).

For pairwise t-tests of the significant omnibus ANOVA for

HbR, with Bonferroni correction (critical ⍺ ¼ .05/3 ¼ .017), H

was significantly different between the 1-back and 2-back

conditions (t(51) ¼ 2.62, p ¼ .011), but not between 2-back

and 3-back (p ¼ .078) or between 3-back and 1-back (p ¼ .34).

3.2. PLS results

Task PLS analyses looking at channel-level H by N-back con-

dition were run separately on H extracted from HbO and from

HbR time series. The first latent variable (LV 1) from the

analysis with H from deoxyhemoglobin concentrations (HbR)

was significant and explained 77% of the crossblock covari-

ance (p¼ .005). LVs 2 and 3 in this analysis were not significant

(all ps > .4). For the significant LV 1 in H from HbR, 11 mostly

medial-frontal channels (#1, #5, #6, #7, #8, #11, #12, #13, #14,

#20, and #25) showed stable changes in scale-invariance by N-
Fig. 6 e Boxplot showing within-subjects effects for averaged H

task for each participant.
back level, indicated by bootstrap ratios with absolute values

greater than 2 [Table 2; Fig. 7]. LV 1 from the analysis of H

calculated from oxyhemoglobin concentrations (HbO) was not

significant (p¼ .066) but did also explain 77% of the crossblock

covariance and mimicked the pattern of results found in H

fromHbR so the results are still presented in Table 2 and Fig. 7.

LVs 2 and 3 in this analysis were not significant (all ps > .17).

For LV 1, 2 channels in the medial superior frontal gyrus (#1

and #2) and 2 in the left inferior frontal gyrus (#22 and #23)

showed differences in H by N-back level. In all cases, the sig-

nificant bootstrap ratioswere greater than 2 (and none smaller

than �2), indicating the relationship between N-back level

andHwas in the same direction. InH calculated fromHbO and

HbR, the first latent variable from each was driven primarily

by the contrast between 1-back and 2-back, with higher H

found during the 1-back task relative to the 2-back task [Fig. 7]

In addition to the N-back level PLS analyses reported

above, supplementary analyses were conducted which

included rest blocks. Rest was not included in the primary

analyses as there were 3 times as many rest blocks as 1-back,

2-back, and 3-back blocks (as there was a rest after each

block), and this would lead to a better signal-to-noise ratio by

averaging across more data in rest versus individual N-back

level. When rest was included in the PLS model, the first LV

examining H extracted from HbO explained 99.3% of the

crossblock covariance (p < .001), with all 33 channels dis-

playing positive, significant bootstrap ratios >2. For H extrac-

ted from HbR, the first LV explained 95.7% of the crossblock

covariance (p < .001) with 27 out of 33 channels displaying

significant bootstrap ratios (all >2). LV 1 loadings for H from

HbO and HbR are shown in Fig. 8 [Top Panel]. The table of

significant channels with corresponding ROIs and bootstrap

ratios can be found in the Supplementary materials.

Additionally, to further investigate whether the non-linear

load effect (H higher for 3-back than 2-back) was due to par-

ticipants' low accuracy on this task, these same PLS analyses

were run separately on the subset of participants (N¼ 33) who

scored higher than 80% on average for the 3-back task and the
for task versus rest. Gray lines connect H values for rest and

https://doi.org/10.1016/j.cortex.2022.05.009
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Table 2 e Significant channels for task PLS LV 1 Top: Results for H from deoxyhemoglobin (HbR), bottom: results for H from
oxyhemoglobin (HbO). Channel number based on source (S) e detector (D) pair. ROI label defined by maximal coverage of
talairach daemon ROI. Channels ordered by size of bootstrap ratio. Bootstrap ratios > |2| were considered significant.

Channel # S D ROI Bootstrap ratio

H from HbR

8 3 2 Medial superior frontal gyrus 4.1

1 1 1 Medial SFG/OFC 4.0

5 2 2 Medial superior frontal gyrus 3.9

6 2 9 Medial superior frontal gyrus 2.9

12 4 2 Medial superior frontal gyrus 2.7

7 2 10 Right inferior frontal gyrus 2.7

14 4 4 Medial superior frontal gyrus 2.5

13 4 3 Medial superior frontal gyrus 2.5

25 9 1 Medial SFG/right IFG 2.4

11 3 9 Medial superior frontal gyrus 2.3

20 7 6 Left inferior frontal gyrus 2.2

H from HbO

22 7 8 Left inferior frontal gyrus 2.6

2 1 2 Medial superior frontal gyrus 2.6

1 1 1 Medial SFG/OFC 2.4

23 8 6 Left inferior frontal gyrus 2.2
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subset (N¼ 19) who scored 80% or lower on average for 3-back.

In the high accuracy subset's H from HbO, the first LV

explained 95.4% of the crossblock covariance (p< .001), with 32

out of 33 channels showing reliable bootstrap ratios (>2). ForH
from HbR, the first LV explained 81.8% of the crossblock

covariance (p ¼ .008), with 19 channels generating significant

bootstrap ratios (>2) [Fig. 8, Middle Panel]. For the low accu-

racy subset, the first LV for H from HbO explained 98.4% of the

crossblock covariance (p < .001), with all 33 channels showing

reliable bootstrap ratios (>2). The first LV for H from HbR in

this subset explained 91.6% of the crossblock covariance

(p < .001), with 26 out of 33 channels showing reliable boot-

strap ratios (>2) [Fig. 8, Bottom Panel]. Overall, the exclusion of

participants with poor accuracy on 3-back led to a much

clearer effect of N-back level on H in the expected direction.

The table of bootstrap ratios with ROIs are reported in the

Supplementary materials.
4. Discussion

Previous research suggests that when people are performing a

cognitively demanding task, the temporal property of their

brain signals will be less scale invariant than at rest, as

quantified by lower H. In addition, this suppression of scale

invariance is found across the whole brain (He, 2011, 2014;

Kardan et al., 2020a) and is unidirectional (Churchill et al.,

2016). However, whether this signature could be extracted

from fNIRS data was unclear. The present study is the first to

apply a scale-invariance (Hurst exponent, H) analysis to

measuring cognitive load with fNIRS, which can be used in a

much wider variety of settings than other neuroimaging mo-

dalities. Consistent with previous neuroimaging research, we

found that task and rest conditions significantly differed by

their average H calculated from both oxyhemoglobin (HbO)

and deoxyhemoglobin (HbR) concentrations changes of the

fNIRS signal. Compared with rest, average H for task was

significantly lower, which suggests a higher level of cognitive
effort and difficulty while performing the N-back task relative

to rest. For N-back condition, a more subtle manipulation of

cognitive load, pairwise t-tests also showed a significant dif-

ference between 1-back and 2-back by H calculated from HbR.

This was not significant with H from HbO, where again, H

during 2-back had lower values than 1-back, but they do

demonstrate convergence with the pattern observed in HbR

and in comparing task vsersu rest.

The N-back level results from averaging across all 33

channels were further supported by those yielded from the

partial least squares analysis. Specifically, in the Task PLS,

which examines differences in H across channels and N-back

level, the first latent variable fromHbR demonstrated a robust

effect of higher H in 1-back versus 2-back across 11 frontal

channels. Though the effect was weaker in H calculated from

HbO, the same pattern was found in this analysis’ LV 1. These

results provide complementary evidence for an effect of

cognitive load and task difficulty on H derived from fNIRS.

Additionally, they suggest that while H is believed to be a

relatively global brain signature (Churchill et al., 2016), greater

sensitivity can be achieved by adopting a multivariate tech-

nique which takes the full data (including channels) as input.

It is worth noting that both in the pairwise comparisons of

average H by N-back condition and the Task PLS analysis, this

study only yielded significant results for the 1-back versus 2-

back comparison. In contrast, the 2-back versus 3-back com-

parison was marginally significant for H by HbR (not with

HbO), and all the other t-test results for 3-back condition (3-

back vs 1-back and 3-back vs 2-back) were not significant.

Moreover, as observed inMeidenbauer et al. (2021) which used

this same dataset, performance in 3-back condition was

generally low and was highly variable. The non-significant

results for the 3-back condition have also been shown in

previous studies, indicated by a non-linear effect of N-back

load (Aghajani et al., 2017; Mandrick et al., 2013, 2016). Re-

searchers have argued that if a task is too difficult, peoplemay

disengage from it or simply “give up”, since it exceeds one's
capability (Causse et al., 2017; Luctkar-Flude and Groll, 2015b;

https://doi.org/10.1016/j.cortex.2022.05.009
https://doi.org/10.1016/j.cortex.2022.05.009


Fig. 7 e LV 1 demonstrated an N-back load-dependent relationship with H extracted from deoxyhemoglobin (HbR; top panel)

and oxyhemoglobin (HbO; bottom panel) concentrations. The left side plots show the relation between H and N-back level.

Error bars are 95% confidence intervals around the mean design salience value. The right panel shows channels (labeled by

number), which had bootstrap ratios (BSR) > |2|.
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Mandrick et al., 2013, 2016). Following this argument and

based on the results reported in Meidenbauer et al. (2021), we

infer that in this study, the 3-back condition might not be

reflecting the highest cognitive load across all participants.

Supporting this idea further, supplementary PLS analyses
excluding participants with worse than 80% accuracy on the

3-back task did show the expected load effect in H extracted

from HbR and to a lesser extent, in H from HbO. However,

future work is needed to evaluate the extent to which H

extracted from fNIRS is affected by individual differences in

https://doi.org/10.1016/j.cortex.2022.05.009
https://doi.org/10.1016/j.cortex.2022.05.009


Fig. 8 e LV 1 examining H as a function of N-back level and

rest. Plots show the relation between H and Rest versus

each N-back level. Error bars are 95% confidence intervals

around the mean design salience value. TOP PANEL:

Including all participants (N ¼ 52). All channels for H from

HbO and 27 out of 33 channels for HbR showed significant,

positive bootstrap ratios (BSR > 2). MIDDLE PANEL: Only

participants scoring higher than 80% on the 3-back task

(N ¼ 33). In H from HbO, 32 out of 33 channels had BSRs >2.
For H from HbR, 19 out of 33 channels had BSRs >2.
BOTTOM PANEL: Only participants scoring 80% or lower on

the 3-back task (N ¼ 19). In H from HbO, 33 channels had

BSRs > 2. In H from HbR, 26 channels had BSRs > 2. No

bootstrap ratios were <¡2 in any analyses.
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effort and task disengagement relative to explicitly manipu-

lated cognitive load.

4.1. Data preprocessing pipeline for H analysis with
fNIRS

The presentwork involved developing a basic pipeline for data

preprocessing and H analysis with fNIRS (All analysis scripts
can be accessed at: https://osf.io/kt5cx/). To check the quality

of our data, we used the SNI (Structured Noise Index) to

measure the systematic noise across channels. We subse-

quently excluded participants who had a high number of low

SNI channels and regressed out SNI from the Hurst exponent.

Both steps were supported by visualizations as effective in

detecting poor data quality, finding 'outliers', and removing

systematic noise. These steps were adopted for two primary

reasons. First, superficial physiological noise is structured in

fNIRS and can differ by person according to how their hair

may obstruct signals (Huppert, 2016; Santosa et al., 2018).

Second, scale invariance is generally a whole brain index that,

when examined across channels, could be biased by channel-

level differences in superficial noise. To further rule out the

influence of motion-related artifacts, we used an innovations

model to calculate the statistical outliers of the time series

(i.e., the signal variations which are larger than what is ex-

pected due to underlying physiological changes) and found

that the motion-related artifacts did not explain H effects.

4.2. Implications of the current study

This study sheds light on the reliability of scale invariance

across neuroimagingmodalities and on the promising future of

adopting fNIRS in examining cognitive load in real life sce-

narios. Relative to EEG and fMRI, fNIRS is more flexible, less

affected by environmental noise, and more robust to motion

artifacts. fNIRS is already used to study cognitive processes in

more ecological valid scenarios (Liu et al., 2016; Quaresima &

Ferrari, 2019). The results of this study demonstrate the effec-

tiveness of H in measuring cognitive load with fNIRS and

further strengthens its capability in real-world settings, such as

monitoring cognitive load during driving, social interactions, or

even to examine cognitive restoration during real interaction

with natural versus urban environments (Berman et al., 2008).

4.3. Limitations and future directions

As this study is the first to demonstrate the effectiveness of H

with fNIRS in measuring cognitive load, there are several

limitations which require further investigation. First, applying

scale invariance analysis in various datasets and experiment

settings (especially in real-world scenarios) would be neces-

sary in the future to further validate the effectiveness and

robustness of this measure of cognitive load with fNIRS. Sec-

ondly, since this analysis measures scale invariance on a

temporal scale, the time window of analysis might impact the

results. In this study, we adopted 20 sec as the timewindow to

match the full length of the rest session. As fNIRS has a rela-

tively high sampling rate, 20 sec � 4.5 Hz provided a suffi-

ciently high number of samples for the DFA to be reliable.

Additionally, due to the high correspondence between fNIRS

and fMRI, we adopted the DFA algorithm from fMRI Hurst

exponent analysis (Churchill et al., 2016) and showed its

effectiveness with the current fNIRS pre-processing pipeline.

However, future work should explore other non-stationary

algorithms to calculate H and examine whether and how

different time window lengths might impact its effectiveness.

We found that H calculated from deoxyhemoglobin (HbR)

showed more reliable effects than did H from oxyhemoglobin

https://osf.io/kt5cx/
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https://doi.org/10.1016/j.cortex.2022.05.009


c o r t e x 1 5 4 ( 2 0 2 2 ) 6 2e7 674
(HbO). This may be due to the fact that HbR is more tightly

coupled with the BOLD response in fMRI (Huppert et al., 2006).

However, as this is the first study to look at H in fNIRS, it is

unclear whether this is a reliable pattern or is related to the

current task design. UnderstandingwhyH extracted fromHbR

shows a stronger effect would be an important and exciting

future direction for this work. Ideally, future investigations

could employ different tasks, contexts, and time windows to

better illuminate these possibilities.

While the current dataset was well-suited to conduct an

initial validation of H from fNIRS as a measure of cognitive

load as it involved a large sample and a standardized working

memory task, it is worth noting that sequential analysis of the

same dataset has the potential to increase the Type-I error

rate (Thompson et al., 2020). Thus, while reanalyzing this

existing dataset provides a useful first step, future research is

needed to more thoroughly validate the robustness of these

results in other data sources. Lastly, as the sample examined

in the current study was primarily young adults (~24.5 years

old on average), wewere not able to examine the effects of age

on H. Research in fMRI has identified that younger adults tend

to have higher H than older adults, and whether this age-

effect can be replicated in fNIRS remains an open question.
5. Conclusion

This study validated the Hurst exponent as an effective

measure of cognitive load with fNIRS, opening the door for a

wide variety of applications for monitoring cognitive load and

fatigue in ecologically valid settings. This work demonstrated

a basic and robust pipeline for calculating scale-invariance

analysis in fNIRS and lays the foundation for future theoret-

ical and practical research using this method. Future work

could further test its theoretical validity and explore its im-

plications with fNIRS in the real world.
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